## Response of California Agriculture to Water Reductions

#### Josué Medellín-Azuara

Richard E. Howitt,

Duncan MacEwan and Jay R. Lund, Daniel Sumner

Workshop on Migration of Agriculture a One Path to Sustainability

Boulder, Colorado

October 21<sup>st</sup>, 2015





# Water and People in California



# California depends on an engineered statewide network



# Agriculture in California



Trend towards permanent crops

Source NASS CDL 2011

Land Cover Categories

(by decreasing acreage) AGRICULTURE\*

Fallow/Idle Cropland

Alfalfa Almonds



California's highly engineered water supply system is loosing its long-term ability to cope with drought as permanent crops water demand increases, and groundwater overdraft continues

# Hydro-economic models

"Hydroeconomic models represent regional scale hydrologic, engineering, environmental and economic aspects of water resources systems within a coherent framework." Harou et al. (2009)

Journal of Hydrology 375 (2009) 627-643

![](_page_6_Picture_3.jpeg)

Review

Hydro-economic models: Concepts, design, applications, and future prospects

Julien J. Harou<sup>a,\*</sup>, Manuel Pulido-Velazquez<sup>b</sup>, David E. Rosenberg<sup>c</sup>, Josué Medellín-Azuara<sup>d</sup>, Jay R. Lund<sup>d</sup>, Richard E. Howitt<sup>e</sup>

# SWAP Model

- More than 90% of the irrigated agriculture
- Positive mathematical programming
- 20 Crop groups
- Maximizes net returns to land and management
- SWAP and C2VSim linked to IMPLAN

![](_page_7_Figure_6.jpeg)

### Suite of Models for Studying Drought Impacts

![](_page_8_Figure_1.jpeg)

#### 2015 Estimated Changes in Water Availability

| Region                  | Surface Water<br>Change (maf/yr) | Additional<br>Groundwater Use<br>(maf/yr) | Net Change<br>(maf/yr) |
|-------------------------|----------------------------------|-------------------------------------------|------------------------|
| Sacramento Valley       | -2.2                             | 1.3                                       | -0.9                   |
| San Joaquin Valley      | -1.9                             | 1.4                                       | -0.5                   |
| Tulare Lake Basin       | -4.8                             | 3.5                                       | -1.3                   |
| Central Valley subtotal | -8.8                             | 6.2                                       | -2.6                   |
| Central Coast           | -0.0                             | 0.0                                       | -0.0                   |
| South Coast             | -0.0                             | 0.0                                       | -0.0                   |
| Colorado River Region   | -0.0                             | 0.0                                       | -0.0                   |
| Statewide Total         | -8.7                             | 6.0                                       | -2.7                   |

#### 2015 Water Shortage & Changes in Groundwater

![](_page_10_Figure_1.jpeg)

#### 2015 Summary of Drought Impacts

| Impact                                                                         | Quantity              |  |  |
|--------------------------------------------------------------------------------|-----------------------|--|--|
| Water supply, 2015 drought                                                     |                       |  |  |
| Surface water reduction                                                        | 8.7 million acre-feet |  |  |
| Groundwater pumping increase                                                   | 6.0 million acre-feet |  |  |
| Net water shortage                                                             | 2.7 million acre-feet |  |  |
| Statewide Agriculture Economic Impacts                                         |                       |  |  |
| Total fallow                                                                   | 564,000 acres         |  |  |
| Crop revenue loss                                                              | \$844 million         |  |  |
| Additional groundwater pumping cost                                            | \$558 million         |  |  |
| Livestock and dairy revenue loss (dairy ~ \$250 mil,<br>livestock ~ \$100 mil) | \$350 million         |  |  |
| Total direct costs                                                             | \$1.75 billion        |  |  |
| Total agriculture economic costs                                               | \$2.7 billion         |  |  |
| Direct job losses                                                              | 8,546                 |  |  |
| Total job losses                                                               | 18,600                |  |  |

#### 2015 Estimated Gross Revenue Reduction

![](_page_12_Figure_1.jpeg)

#### 2015 Estimated Crop Acreage Reductions

![](_page_13_Figure_1.jpeg)

#### 2015 Estimated Crop Acreage Reductions

![](_page_14_Figure_1.jpeg)

## UC Davis estimate Idle Land

![](_page_15_Figure_1.jpeg)

Hydro-economic models are useful for improving quantitative understanding of a water system and, assess economic costs, and screening water management alternatives. Remote sensing can be helpful in ground thruting model predictions.

# What can we do better?

- Land use information
- Groundwater management
- Water trade environmental impact reports
- Water data and hydro-economics
- Remote sensing efficiency

## Conclusions

- California is remarkably drought resilient
- Agriculture relies on groundwater, Urban uses a portfolio approach
- Drought Impacts vary greatly by sector from high to low impact:
  - Environmental values and fish species
  - Rural communities
  - Agricultural production
    - Urban water use

## Further information

Drought Report Website: <u>https://droughtimpacts.ucdavis.edu</u>

http://californiawaterblog.com/

Josué Medellín jmedellin@ucdavis.edu

## Acknowledgments

- Funding from California Department of Food and Agriculture
- Forest Melton from NASA for sharing idle land estimates
- Department of Water Resources for connection with the C2VSIM model. Tariq Kadir, E. Can Dogrul, Charles Brush
- Thomas Harter, Giorgos Kourakos for additional groundwater information
- Andy Bell, and Alyssa Obester, Alvar Escriva-Bou for GIS, remote sensing assistance and research support
- Kabir Tumber and Jennifer Scheer